The Doubly Adaptive LASSO for Vector Autoregressive Models
نویسندگان
چکیده
The LASSO (Tibshirani, J R Stat Soc Ser B 58(1):267–288, 1996, [30]) and the adaptive LASSO (Zou, J Am Stat Assoc 101:1418–1429, 2006, [37]) are popular in regression analysis for their advantage of simultaneous variable selection and parameter estimation, and also have been applied to autoregressive time series models. We propose the doubly adaptive LASSO (daLASSO), or PLAC-weighted adaptive LASSO, for modelling stationary vector autoregressive processes. The procedure is doubly adaptive in the sense that its adaptive weights are formulated as functions of the norms of the partial lag autocorrelation matrix function (Heyse, 1985, [17]) and Yule–Walker or ordinary least squares estimates of a vector time series. The existing papers ignore the partial lag autocorrelation information inherent in a VAR process. The procedure shows promising results for VAR models. The procedure excels in terms of VAR lag order identification.
منابع مشابه
Shrinkage estimation and variable selection in multiple regression models with random coefficient autoregressive errors
In this paper, we consider improved estimation strategies for the parameter vector in multiple regression models with first-order random coefficient autoregressive errors (RCAR(1)). We propose a shrinkage estimation strategy and implement variable selection methods such as lasso and adaptive lasso strategies. The simulation results reveal that the shrinkage estimators perform better than both l...
متن کاملBayesian Quantile Regression with Adaptive Lasso Penalty for Dynamic Panel Data
Dynamic panel data models include the important part of medicine, social and economic studies. Existence of the lagged dependent variable as an explanatory variable is a sensible trait of these models. The estimation problem of these models arises from the correlation between the lagged depended variable and the current disturbance. Recently, quantile regression to analyze dynamic pa...
متن کاملLearning coherent Granger-causality in panel vector autoregressive models
We consider the problem of forecasting multiple time series across multiple cross-sections based solely on the past observations of the series. We propose to use panel vector autoregressive model to capture the inter-dependencies on the past values of the multiple series. We restrict the panel vector autoregressive model to exclude the cross-sectional relationships and propose a method to learn...
متن کاملSparse seasonal and periodic vector autoregressive modeling
Seasonal and periodic vector autoregressions are two common approaches to modeling vector time series exhibiting cyclical variations. The total number of parameters in these models increases rapidly with the dimension and order of the model, making it difficult to interpret the model and questioning the stability of the parameter estimates. To address these and other issues, two methodologies f...
متن کاملEstimating Structured Vector Autoregressive Models
While considerable advances have been made in estimating high-dimensional structured models from independent data using Lasso-type models, limited progress has been made for settings when the samples are dependent. We consider estimating structured VAR (vector auto-regressive model), where the structure can be captured by any suitable norm, e.g., Lasso, group Lasso, order weighted Lasso, etc. I...
متن کامل